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ABSTRACT

A balloon borne measurement of the cosmic ray electron spectrum

from 10 to 200 GeV is reported in which two new techniques have been

used to remove proton background contamination. First, the depth of

the spectrometer was more than 25 radiation lengths, the equivalent of

more than 2 mean free paths of material, enabling hadronically and

electromagnetically induced cascades to be differentiated for a sub-

set of the data. Second,electromagnetic cascade starting points were

determined to within +0.1 radiation lengths based upon a calibration

with electrons from 5.4 to 18 GeV at the Stanford Linear Accelerator,

greatly reducing the chances for a proton to simulate an electron. The

resulting spectrum, when fitted with a power law, is quite steep,

-3.2+0.1, but the chi-square fit is marginal. A significantly better

fit is achieved assuming a transition region model in which the source

spectral index is 2.7 with a break occurring at about 50 GeV.

tPortions of this paper will be submitted in partial fulfillment of
the requirements for the Ph.D. degree from the University of Maryland.
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Introduction

The energy spectrum of primary cosmic electrons above 1 GeV has

been given much attention in recent years because the electrons represent

an important probe into the history and structure of the galaxy. They

may provide information on the origin of all cosmic rays and on the back-

ground of electromagnetic radiation. The electron spectrum is expected

to exhibit a steepening at an energy related to the photon and magnetic

energy density in the interstellar region where electrons are stored.

While results up to several hundred GeV have been obtained in balloon

flights, [Nishimura et al., 1969, Anand et al., 1968, 1969, Scheepmaker,

1971, Meyer and MUller, 1971] serious discrepancies in the spectral shape

and absolute intensity are apparent, and hence it is difficult to arrive

at specific conclusions about the electron propagation.

In the hope of clarifying the experimental situation, a large area

detector was developed for use in a series of balloon flights. The ex-

periment worked well on flights 1 and 3 which were flown from Alamogordo,

New Mexico on April 28, 1969, at 7.9 g/cm2 residual atmosphere and on

November 11, 1970 at 7.4 g/cm2 . A total exposure factor of -4000 M~-ster-sec

was obtained. The experiment provided very detailed information on each

event. Twenty three detectors were used to identify each event and sample

the longitudinal electromagnetic cascade development. Each of these de-

tectors was pulse height analyzed over a dynamic range of 104. A digital

spark chamber provided trajectory data for each particle. Data on the

primary cosmic ray proton and helium spectrum using this instrument has

previously been published [Ryan et al., 1972].
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DESCRIPTION OF THE DETECTOR

A diagram of the detector as flown on flight 3 is shown in figure 1.

It consists of three sections: a section for particle identification, an

electromagnetic shower section, and a nuclear cascade section. The charge

module is made up of four detectors; two 1/4" plastic scintillators, a

1/2" acrylic plastic Cerenkov detector, and a 1/8" cesium iodide scint-

illator. Each of these detectors is viewed by photomultipliers and their

outputs are pulse height analyzed. Included in the charge module also

is a digital spark chamber of the type developed by Ehrmann et al., [1967].

This chamber allows particle trajectories to be determined so that geomet-

rical corrections can be made to the pulse heights from the large area

detectors. The spark chamber is also very useful in eliminating back-

ground particles entering the sides of the detector which satisfy the

trigger criteria.

The electromagnetic shower section of the experiment is composed of

twelve modules, each of which consists of a 1/8" thick tungsten sheet

and 1/4" plastic scintillator representing 0.9 radiation lengths. Each

module is viewed by two photomultiplier tubes whose outputs are summed

and pulse height analyzed.

Although the nuclear cascade section was primarily for measurement

of the high energy proton spectrum,it was extremely useful for determining

the interacting proton background correction to the electron intensity.

The nuclear cascade section consists of seven iron modules, each one

about 4.5 radiation lengths thick [0.5 nuclear mean free paths]. Again

a sandwich structure is employed by alternating layers of plastic scintillators
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and iron. Each iron module contains three plastic scintillators viewed

by two photomultipliers tubes whose outputs are summed and pulse height

analyzed.

TRIGGERING MODES OF THE EXPERIMENT

In order to reduce background and the dead time in the experiment,

the electron trigger criteria were set to demand the equivalent of a 7

GeV electron in the tungsten modules. In addition a minimum pulse height

was demanded in each of the 12 tungsten modules which required that

the cascades develop very rapidly. This not only discriminated against

low energy particles, but also eliminated triggers from high energy pro-

tons interacting deep in the tungsten. The only protons which triggered

the experiment in the electron mode were those which interacted early

enough in the tungsten stack to deposit a large energy in all the tungsten

modules.

Two other important modes were included in the experiments: these

are the proton and calibration modes. In the proton trigger mode, a

particle must deposit greater than 40 GeV in the nuclear cascade section

of the experiment. Events were allowed to trigger in both the electron

and proton modes simultaneously. These events were used to understand inter-

acting proton background as discussed later. The calibration mode permits

any charged particle which passed through both of the plastic scintillators

in the charge module to trigger the experiment. This mode is used on

the ground for calibration of individual detector elements on sea level

muons. During the 1970 flight, every 32nd event opened a gate which per-

mitted a calibration mode event to be recorded. In this way detector per-

formance was monitored during the flight.



CALIBRATION OF THE EXPERIMENT

While the instrument provides a great deal of information about each

particle which triggers it, the transition effect [Pinkau, 1965] and the

lack of any simple and reliable approximation to showers in heavy mater-

ials make interpretation of the data difficult. It was realized early

in the detector development that calibration of the instrument would be

mandatory.

The detector was calibrated on positrons from 5.4 to 18 GeV at the

Stanford Linear Accelerator, SLAC, in 1969. The mean energy deposition

for various energies and angles of incidence was normalized in terms of

the energy deposition due to sea level muons which could penetrate the

85 gm/cm' of the detector. All of these were then fitted to the expressions

f (Eo,to,t)=exp (at+bt
2
) txa+O.5 (1)

f (Eo,to0t)= [ t ]
1
/ 2

exp I-t+2 [(t-a) (y-0.56) ]
1

/

2

t>+0.5 (2)

where f (Eo,to,t) is the energy deposition that an electromagnetic cascade

initiated by an electron of energy Eo will produce at depth t, if it

started to cascade at depth to. The variables y and t are related to

the incident energy and the depth by

y=ln (E_), and t=SD+to
7c cosa

respectively where S is the detector module number, D is the depth in

radiation lengths of one tungsten module, and 0 is the angle of incidence

with respect to the normal. Ec,Dto, and a are free parameters which are

determined by simultaneously fitting the observed showers at eight dif-

ferent energies to equations 1 and 2, [see Crannell et al., 1972 for a

discussion of the calibration procedures]. The parameters a and b are

uniquely determined by requiring f (Eo,to,t) and its first derivatives to
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be continuous at t=+0.O5. Equation (2) is after Heisenberg [1946] and

is based on approximation A of cascade theory. Equation (1) is simply

used to carry the Heisenberg expression below the singularity at t=q.

Knowing Ec, D, and the energy deposition of an electron of unknown

energy impinging on the instrument, the data from an event can be fitted

to the electromagnetic cascade curves to determine an "apparent starting

point" of the shower, to, and bhe incident energy, E0 .

These parameters are determined by the minimization of

X2= 12 [f(Eo, toti) - fi e~~~~~~~~~X =E~~~~~~~~~~~ z i}(3)
i21 a(Eo~tolti)

where a2 (Eototi) is the variance of f(Eo,to,ti). At SLAC energies,

we observed a2 (Eo,to,ti);tf(Eototi) except at small depths where the

deviations were larger. x2 also gives a measure of the likelihood of

the incident particle being an electron and the data from SLAC provides

2
a 2 distribution for electrons to compare against flight particles.

Note that equation (3) represents a fit with 10 degrees of freedom so

that Eo and to are well determined.

The energy distribution observed by applying the procedure outlined

above to a run with 18 GeV electrons from SLAC is shown in Figure 2. The

FWHM of the distribution is 17%. The small peak below 40 GeV is due to

two 18 GeV electrons incident on the experiment within the resolving time

of the experiment [a frequent occurrence at SLAC, but not a problem in

flight].

DISCRIMINATION AGAINST PROTONS

Since the electron component of cosmic rays isat best only a few

percent of the proton component, the most serious problem in measuring
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electrons is to reduce to a negligible contribution those interacting

protons which may masquerade as electrons. Nuclear interactions which

produce a o meson may produce a shower that is, in practice, indistinguish-

able from a shower produced by an electron.

Our study of accelerator electrons and inflight high energy protons

has revealed that the method of fitting the showers to the equation above

provides a sensitive means of discrimination against the proton back-

ground. In figure 3 a distribution of "apparent starting points" is

presented for a sample of 16 GeV electrons from SLAC. This histogram

is representative as no energy dependence was noted in the 5.4 to 18 GeV

range. It should be noted that the "apparent starting point" distribution

peaks at about 0.41 r. 1. before the tungsten stack. This agrees quite

well with 0.29 radiation lengths of material that are calculated to be in

the charge module preceding the tungsten stack and suggests that this

distribution's width represents real fluctuations in the production of

the first high energy cascade photon.

In contrast to the electrons, a group of singly charged particles was

selected from the 1970 flight which deposited >40 GeV in the iron and

>5 GeV in the tungsten. The condition that the energy deposited in the

iron exceed the energy deposited in the tungsten was also imposed to get

a set of inflight interacting protons. Their "apparent starting point"

distribution is plotted in figure 4.

The distribution in figure 4 exhibits marked structure. The source

of the structure is not completely understood. One quarter of the nuclear

interactions should take place in the plastic scintillators which are

invisible on this radiation length scale. The structure is probably the
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result of the transport of Y-rays from no decay into subsequent tungsten

slabs. However, the process of fitting electromagnetic shower curves to

nuclear interactions may shift the "apparent starting point" .by a few

tenths of a radiation length. In any case, the structure is real, is

present for protons and especially for background events, and says that

the shower fitting procedure is defining an "apparent starting point"

with an accuracy of approximately O.1 radiation length. This has the

effect of greatly reducing the amount of material in which a proton can

interact to simulate an electron. 

ELECTRON SELECTION

Each possible electron event is examined to be sure that it is caused

by a singly charged particle as determined by the top plastic scintillator

and the Cerenkov detector. Both of these detectors are 30 cm above the

tungsten stack. If the particle is singly charged, the spark chamber data

is used to extrapolate the path of the particle to the twelfth tungsten

module. Only particles whose trajectories pass within the inner 801o of the

area of the 12th tungsten module are analyzed so a well defined geometry

is used for flux calculations.

Each event accepted is then fitted to the electromagnetic shower

function to determine its energy, Eo0, and apparent starting point, to.

The minimum X2 is examined to see if its value is less than the 0.95

probability point for electrons of energy Eo . If it is, and if the starting

point is in the range for electrons observed at SLAC, the particle is

accepted as an electron.

RESIDUAL PROTON BACKGROUND AND OTHER CORRECTIONS

Even though unambiguous identification of each incident particle
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should be attainable with nuclear emulsions, emulsion techniques are re-

sponsible for perhaps the highest [Anand et al., 1968] and the lowest

[Marar et al., 1971] measured primary cosmic ray electron intensities.

Other workers have used statistical separation of the protons and elec-

trons. Scheepmaker [1971] has used the spectrum of interacting alpha

particles in flight to estimate the interacting proton spectrum. Earl

et al., [1972] and Meyer and Mtller, [19711 have used data and extrapola-

tions from accelerator pions and protons to determine the proton in-

duced contamination.

The unique feature of this experiment is its total depth of four

nuclear mean free paths of material. This depth allows secondaries from

nuclear interactions to interact again and reveal themselves as proton

induced showers.

Although our rejection of such events is still a statistical one,

we can use flight data itself to determine the proton background for

this experiment. A subset of the apparent electrons [those which satisfied

all of the above criterial is selected which have trajectories which pass

through at least three of the seven iron modules. This subset of about

25 of the events is examined to determine the fraction which deposited

significantly more energy in the iron than could be expected of an elec-

tron of energy E. This leads to a 29+5% correction which is then applied

to all the data.

The final spectrum includes corrections to the data for energy loss

due to bremsstrahlung in the residual atmosphere, atmospheric secondaries,

spark chamber inefficiency and dead time due to paralysis of the experi-

ment during event readout. The correction for re-entrant albedo electrons
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is negligible at the energies measured.

ENERGY DEPENDENT EFFECTS

Extensive investigations for any energy dependent effect in selec-

tion were also carried out. Energy dependence due to backscatter into

the spark chamber or into the charge determination section was studied

by examining the data from the spark chamber and the S2 scintillator

below it, as a function of energy. No significant correlation was found

between larger numbers of sparks and large pulse heights in the scintillator

as a function of the estimated energy of the incident particle. No de-

termination of any backward transport of gamma rays could be made, but

the work of Ford [1972] indicates that back-scattering gamma rays greater

than 2 MeV occur in less than 2% of the electron showers at high energies.

A significant energy dependence was found in the 
2
distribution, an

2
effect that was also observed in our positron data from SLAC. The X

value below which 95% of the SLAC positrons fell was found to increase

0.31 2
like E 3 . The spreading of the X distribution is qualitatively in

agreement with our expectation since we observed that the standard devia-

tions in the showers were larger than expected early in the showers.

As energy rises there are more data points early in the shower [relative

to shower maximum] and hence our underestimation of the deviations would

make the parameter 2 rise as a function of energy.

To further check the data for energy dependent effects, the single

particle events that failed the electron selection criteria were sorted

into energy bins. Their spectral index was found to be -2.7+0.2, the

same as the high energy proton spectrum [Ryan et al., 1972].

The final correction for proton contamination as determined by the
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spectrometer is nearly energy independent, which is surprising because

of the difference in spectra. Probably the proton rejection due to starting

point location and cascade shape is better at high energies because the

electromagnetic showers are less subject to fluctuations than their

hadronic counterparts. This proves the background rejection ratio is

improving at the same time the proton to electron ratio is going up.

Vis-a-vis other experiments, we would like to point out that a pro-

ton contamination of only 30%0 at low energies could become much larger

at high energies since the electron and proton spectra are not the same.

DISCUSSION

While the intensity in figure 5 agrees with the measurements of

many other workers at about 10 GeV, the spectrum is significantly steeper.

Assuming the data can be represented by a single power law over the range

10-200 GeV, the spectral index obtained is -3.2+0.1. This spectral index

is steeper than the often quoted value of 42.7, [Bleeker et al., 1968,

Scheepmaker, 1971], although steep spectra have previously been reported

[Earl et al., 1972, Nishimura et al., 1969, Rubstov and Zatsepin, 1968,

Webber and Rockstroh, 19721.

The spectrum shows no sharp "break" but does exhibit a consistent

drop off in intensity. The Chi-square test for 8 degrees of freedom

indicates that a power law represents a marginal fit to the data (al-

most 3 standard deviations).

The spectral index is expected to steepen by a full power if

synchrotron and inverse Compton losses are dominant, based on the leakage

lifetime approximation. This approximation has, however, been called

into question by Jokipii and Meyer [1968] because it replaces the
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diffusion term in the continuity equation by a characteristic loss term.

Even the assumption of isotropic diffusion with a disk-shaped source

region, produces a spectrum with two "breaks" each of one half a power

at energies separated by a factor of 50 or more depending on the dimen-

sions of the source region. Jokipii and Meyer predict a break in the

1-10 GeV range, but they also point out that the assumption of isotropic

diffusion is probably not realistic.

Berkey and Shen [1969] have carried out a similar treatment using

convection diffusion and find only one "break" occurs. However, their

calculation does not include perpendicular diffusion nor the role of

random magnetic field lines allowing escape from the disk. Using our

data, the different models could certainly nQt be distinguished. A fit

to a leakage lifetime model was thus attempted because of the poor fit to

the power law.

From Ramaty [1972], we find that the spectral break region can be

represented in the following manner. If the source spectrum is of the form

Q(E)E
-
E , then the equilibrium intensity I(E), wouldsatisfy the expres-

sion I(E)Erso 1/(l-ax) -2 e- Xdx (4)

wih WET /c,
with a=30-, where W is the electromagnetic energy density in eV/cm3 , and

T is the mean electron lifetime in mega-years. The energy at which a=l

is defined as the "break" energy.

The transition region model fits the data at about the 1 standard

deviation level and yields a value of 2.7 for F, the source spectral index

and a break energy of -50 GeV. Not too much significance should be attached

to the particular model used or to the values obtained for the parameters;
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the transition region model contained one more free parameter than the

power law model, and the minimum in the chi-square was very broad.

3 dN
The two fits to the data are illustrated in figure 6 where E xU

is plotted as a function of energy. [This representation is chosen to

emphasize details of the data]. The best power law and the transition

region model fits are indicated. The transition region model break

corresponds to a life of about 6xO1 6 years assuming W-1l eV/cm3.

Our data argues strongly against a spectrum as hard as-2.7 around

100 GeV, and is suggestive that the data cannot be represented by a single

power law over the range 10-200 GeV. The theoretical interpretation of

this result in terms of the leakage lifetime approximation is not clear.

In view of the apparent complexity of the electron spectrum in the

high energy region, new data above 100 GeV and more precise data below

will be required to further our understanding. This is essential if

we are to answer more questions about the cosmic electrons, their

sources and their propagation through the galaxy.
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FIGURE CAPTIONS

Figure 1 -

Figure 2 -

Figure 3 -

Figure 4 -

Figure 5 -

Figure 6 -

Diagram of the ionization spectrometer showing the physical
layout of the various component parts.

Estimated energy distribution for cascades initiated by 18 GeV
electrons.

"Apparent Starting Point" distribution for electromagnetic
cascades initiated by 16 GeV electrons. The origin of the
abscissa references the top of the tungsten stack.

"Apparent Starting Point" distribution for singly charged
cosmic ray primaries depositing >40 GeV in iron stack and
> 5 GeV in tungsten stack.

Differential spectrum of cosmic ray electrons (this experiment
and other workers)

Differential spectrum of cosmiS ray electrons at the top of
the atmosphere multiplied by E . The two successful flights
are shown separately along with best fits to models.
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STARTING POINT DISTRIBUTION OF 16-GeV SLAC ELECTRONS
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